Mode-evolution-based polarization rotator-splitter design via simple fabrication process.

نویسندگان

  • Wangqing Yuan
  • Keisuke Kojima
  • Bingnan Wang
  • Toshiaki Koike-Akino
  • Kieran Parsons
  • Satoshi Nishikawa
  • Eiji Yagyu
چکیده

A mode-evolution-based polarization rotator-splitter built on InP substrate is proposed by combining a mode converter and an adiabatic asymmetric Y-coupler. The mode converter, consisting of a bi-level taper and a width taper, effectively converts the fundamental TM mode into the second order TE mode without changing the polarization of the fundamental TE mode. The following adiabatic asymmetric Y-coupler splits the fundamental and the second order TE modes and also converts the second order TE mode into the fundamental TE mode. A shallow etched structure is proposed for the width taper to enhance the polarization conversion efficiency. The device has a total length of 1350 µm, a polarization extinction ratio over 25 dB and an insertion loss below 0.5 dB both for TE and TM modes, over the wavelength range from 1528 to 1612 nm covering all C + L band. Because the device is designed based on mode evolution principle, it has a large fabrication tolerance. The insertion loss remains below 1 dB and the polarization extinction ratio remains over 17 dB with respect to a width variation of +/- 0.12 µm at the wavelength of 1570 nm, or +/- 0.08 µm over the entire C + L band.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper.

A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM(0) mode into the TE(1) mode, which will output as the TE(0) mode after processed by the subsequent MMI mode converter, 90-d...

متن کامل

Integrated mode-evolution-based polarization splitter.

A mode-evolution-based polarization splitter suitable for high-index-contrast systems and directly integratable with a recently reported on-polarization rotator is described and its performance verified through both finite-difference time-domain and eigenmode expansion simulations. For a device length of 200 microm, greater than 22 dB of extinction is obtained across a 1.45-1.75-microm bandwidth.

متن کامل

A silicon-on-insulator polarization diversity scheme in the mid-infrared.

We propose a silicon-on-insulator (SOI) polarization diversity scheme in the mid-infrared wavelength range. In consideration of absorption loss in silicon dioxide (SiO2), the polarization splitter-rotator (PSR) is designed and optimized with silicon nitride (SiN) upper-cladding and SiO2 lower-cladding. This asymmetry allows the PSR, which consists of mode-conversion tapers...

متن کامل

Polarization splitter and polarization rotator designs based on transformation optics.

The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the po...

متن کامل

Design of a SiO₂ top-cladding and compact polarization splitter-rotator based on a rib directional coupler.

A compact polarization splitter-rotator based on a silicon-on-insulator rib asymmetrical directional coupler with SiO2 top-cladding is proposed. Unlike previously reported PSRs which specifically required the top-cladding material to be different from the bottom cladding in order to break the symmetry of the waveguide cross-section, our proposed PSR has no such limitation on the top-cladding du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 2012